Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Med ; 200: 106925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797927

RESUMO

This study was designed to examine how the COVID-19 pandemic changed e-cigarette user habits and risk perceptions. A nationally distributed 52-item questionnaire assessed nicotine e-cigarette use, perceptions, COVID-19 diagnosis, demographic data, and vaping habits among respondents aged 16-96 years (n = 565). Questions were developed in-house to assess vaping habits of users and risk perceptions of nicotine containing e-cigarette users and non-users both before and during the COVID-19 pandemic. Seventy-six percent of non-users believed that e-cigarette use would lead to worse COVID-19 symptoms, compared to 40% of e-cigarette users (P < 0.001). Twenty-eight percent of non-users also believed that e-cigarette users were more likely to be infected with SARS-CoV-2, versus 11% of e-cigarette users (P < 0.001). Fifty-eight percent of e-cigarette users described themselves as making no change in their e-cigarette usage, 10% decreased e-cigarette use, and 32% increased e-cigarette use during the pandemic. Twenty-five percent of users switched to vaping non-socially during the pandemic (P < 0.001). Sixty-seven percent of e-cigarette users replied that they would decrease or stop vaping if diagnosed with COVID and 31% said they would continue (P < 0.001). These findings reveal there are large differences in risk perception of e-cigarette use between users and non-users. Additionally, our findings characterize the habits of e-cigarette users during the COVID-19 pandemic, revealing users report steady to increased use, more caution in social settings, and would reduce usage if diagnosed with COVID-19.


Assuntos
COVID-19 , Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , COVID-19/epidemiologia , Teste para COVID-19 , Humanos , Nicotina/efeitos adversos , Pandemias , SARS-CoV-2 , Vaping/epidemiologia
2.
Elife ; 112022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35411847

RESUMO

While health effects of conventional tobacco are well defined, data on vaping devices, including one of the most popular e-cigarettes which have high nicotine levels, are less established. Prior acute e-cigarette studies have demonstrated inflammatory and cardiopulmonary physiology changes while chronic studies have demonstrated extra-pulmonary effects, including neurotransmitter alterations in reward pathways. In this study we investigated the impact of inhalation of aerosols produced from pod-based, flavored e-cigarettes (JUUL) aerosols three times daily for 3 months on inflammatory markers in the brain, lung, heart, and colon. JUUL aerosol exposure induced upregulation of cytokine and chemokine gene expression and increased HMGB1 and RAGE in the nucleus accumbens in the central nervous system. Inflammatory gene expression increased in the colon, while gene expression was more broadly altered by e-cigarette aerosol inhalation in the lung. Cardiopulmonary inflammatory responses to acute lung injury with lipopolysaccharide were exacerbated in the heart. Flavor-specific findings were detected across these studies. Our findings suggest that daily e-cigarette use may cause neuroinflammation, which may contribute to behavioral changes and mood disorders. In addition, e-cigarette use may cause gut inflammation, which has been tied to poor systemic health, and cardiac inflammation, which leads to cardiovascular disease.


The use of e-cigarettes or 'vaping' has become widespread, particularly among young people and smokers trying to quit. One of the most popular e-cigarette brands is JUUL, which offers appealing flavors and a discrete design. Many e-cigarette users believe these products are healthier than traditional tobacco products. And while the harms of conventional tobacco products have been extensively researched, the short- and long-term health effects of e-cigarettes have not been well studied. There is even less information about the health impacts of newer products like JUUL. E-cigarettes made by JUUL are different relative to prior generations of e-cigarettes. The JUUL device uses disposable pods filled with nicotinic salts instead of nicotine. One JUUL pod contains as much nicotine as an entire pack of cigarettes (41.3 mg). These differences make studying the health effects of this product particularly important. Moshensky, Brand, Alhaddad et al. show that daily exposure to JUUL aerosols increases the expression of genes encoding inflammatory molecules in the brain, lung, heart and colon of mice. In the experiments, mice were exposed to JUUL mint and JUUL mango flavored aerosols for 20 minutes, 3 times a day, and for 4 and 12 weeks. The changes in inflammatory gene expression varied depending on the flavor. This suggests that the flavorings themselves contribute to the observed changes. The findings suggest that daily use of pod-based e-cigarettes or e-cigarettes containing high levels of nicotinic salts over months to years, may cause inflammation in various organs, increasing the risk of disease and poor health. This information may help individuals, clinicians and policymakers make more informed decisions about e-cigarettes. Further studies assessing the impact of these changes on long-term physical and mental health in humans are desperately needed. These should assess health effects across different e-cigarette types, flavors and duration of use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Mangifera , Mentha , Aerossóis , Animais , Encéfalo , Colo , Inflamação , Pulmão , Camundongos
4.
Sci Rep ; 12(1): 2536, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169234

RESUMO

The health effects of e-cigarettes remain relatively unknown, including their impact on sleep quality. We previously showed in a pilot study that females who smoke both conventional tobacco and vape e-cigarettes (dual users) had decreased sleep quality (measurement of how well an individual is sleeping) and increased sleep latency (amount of time to fall asleep), suggesting an influence by gender. Cough is also known to adversely impact sleep quality and may be caused by inhalant use. As a result, we undertook this study to assess the impact of e-cigarette, conventional tobacco, and dual use on sleep quality, sleep latency, cough, and drug use. Participants (n = 1198) were recruited through online surveys posted to social media sites with a monetary incentive. Participants were grouped by inhalant use, with 8% e-cigarette users, 12% conventional tobacco users, 30% dual users, and 51% non-smokers/non-vapers. Dual use of e-cigarettes and conventional tobacco was associated with increased sleep latency relative to non-smokers/non-vapers by multivariable linear regression (mean difference of 4.08; 95% CI: 1.12 to 7.05, raw p = 0.007, adjusted p = 0.042); however, dual usage was not significantly associated with sleep quality relative to non-smokers/non-vapers (mean difference 0.22, 95%CI: (-0.36, 0.80), raw p = 0.452, adjust p = 0.542). Dual use was also associated with a higher reporting of cough (p = 0.038), as well as increased marijuana (p < 0.001) and cocaine (p < 0.001) usage. This study demonstrates that  dual use is associated with longer sleep latency, and suggests that the shared component of nicotine may be a driver. Because sleep broadly impacts multiple aspects of human health, defining the associations of e-cigarettes and vaping devices on sleep is critical to furthering our understanding of their influence on the body.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Latência do Sono , Fumar Tabaco , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Adulto Jovem
6.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33988226

RESUMO

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Assuntos
COVID-19 , Armadilhas Extracelulares , Estado Terminal , Humanos , Ativação de Neutrófilo , Neutrófilos , Fenótipo , SARS-CoV-2
7.
Artigo em Inglês | MEDLINE | ID: mdl-34948812

RESUMO

The COVID-19 pandemic generated large amounts of stress across the globe. While acute stress negatively impacts health, defining exact consequences and behavioral interventions can be difficult. We hypothesized that a generalized increase in stress and anxiety caused by continuation of the global pandemic would negatively impact sleep quality and that ever users of e-cigarettes and conventional tobacco would have more profound alterations over time. Participants were recruited via social media to complete an online survey in April 2020 (n = 554). Inhalant use was assessed through the UCSD Inhalant Questionnaire and sleep quality was gauged through the Pittsburgh Sleep Quality Index (PSQI). A set of participants (n = 217) retook the survey in June 2020. Inhalant users-historical or current e-cigarette vapers, conventional tobacco smokers, and dual users-had higher PSQI scores than never smoker/never vapers, demonstrating worse sleep quality in inhalant users. Non-smoking/non-vaping subjects who retook the survey in June 2020 had improvement in their PSQI scores by paired t test, indicating better sleep quality as the pandemic continued, while inhalant users of all types had persistently high PSQI scores (poor sleep quality). These data suggest that ever users of tobacco products may be susceptible to overall diminished sleep quality in the setting of stressful life circumstances. These data also suggest that pandemic-initiated lifestyle changes may have led to improvements in sleep quality. Finally, these findings raise concerns for correlations between either past or active e-cigarette use on sleep, and thus overall health.


Assuntos
COVID-19 , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Estudos Transversais , Humanos , Pandemias , SARS-CoV-2 , Qualidade do Sono , Vaping/efeitos adversos
9.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262972

RESUMO

Each type of vaping device (vape pen, box Mod and JUUL), as well as nicotine and flavourings, induces a disparate metabolite profile or signature, such that each device and liquid is likely to lead to its own set of health effects https://bit.ly/3eExKzi.

10.
Front Physiol ; 12: 649604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122126

RESUMO

Conventional smoking is known to both increase susceptibility to infection and drive inflammation within the lungs. Recently, smokers have been found to be at higher risk of developing severe forms of coronavirus disease 2019 (COVID-19). E-cigarette aerosol inhalation (vaping) has been associated with several inflammatory lung disorders, including the recent e-cigarette or vaping product use-associated lung injury (EVALI) epidemic, and recent studies have suggested that vaping alters host susceptibility to pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the impact of vaping on lung inflammatory pathways, including the angiotensin-converting enzyme 2 (ACE2) receptor known to be involved in SARS-CoV-2 infection, mice were exposed to e-cigarette aerosols for 60 min daily for 1-6 months and underwent gene expression analysis. Hierarchical clustering revealed extensive gene expression changes occurred in the lungs of both inbred C57BL/6 mice and outbred CD1 mice, with 2,933 gene expression changes in C57BL/6 mice, and 2,818 gene expression changes in CD1 mice (>abs 1.25-fold change). Particularly, large reductions in IgA and CD4 were identified, indicating impairment of host responses to pathogens via reductions in immunoglobulins and CD4 T cells. CD177, facmr, tlr9, fcgr1, and ccr2 were also reduced, consistent with diminished host defenses via decreased neutrophils and/or monocytes in the lungs. Gene set enrichment (GSE) plots demonstrated upregulation of gene expression related to cell activation specifically in neutrophils. As neutrophils are a potential driver of acute lung injury in COVID-19, increased neutrophil activation in the lungs suggests that vapers are at higher risk of developing more severe forms of COVID-19. The receptor through which SARS-CoV-2 infects host cells, ACE2, was found to have moderate upregulation in mice exposed to unflavored vape pens, and further upregulation (six-fold) with JUUL mint aerosol exposure. No changes were found in mice exposed to unflavored Mod device-generated aerosols. These findings suggest that specific vaping devices and components of e-liquids have an effect on ACE2 expression, thus potentially increasing susceptibility to SARS-CoV-2. In addition, exposure to e-cigarette aerosols both with and without nicotine led to alterations in eicosanoid lipid profiles within the BAL. These data demonstrate that chronic, daily inhalation of e-cigarette aerosols fundamentally alters the inflammatory and immune state of the lungs. Thus, e-cigarette vapers may be at higher risk of developing infections and inflammatory disorders of the lungs.

11.
J Clin Sleep Med ; 17(11): 2233-2239, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34027889

RESUMO

STUDY OBJECTIVES: Targeted marketing has caused a recent surge in teen electronic cigarette usage. In all-age surveys, we isolated adolescent data (13-20 years) to assess age alongside electronic cigarettes, traditional tobacco, and dual usage of both with sleep quality and cough. Based on existing adult literature, we hypothesized an association between dual usage and increased sleep latency. METHODS: Participants were recruited to complete surveys via social media sites. We performed 3 surveys: Survey 1 (n = 347) in 2018, Survey 2 (n = 1198) in 2019, Survey 3 (n = 554) in 2020. Surveys 1 and 2 had 3 sections: UCSD Inhalant Use Survey, Pittsburgh Sleep Quality Index, and Leicester Cough Questionnaire. Survey 3 did not include the Leicester Cough Questionnaire, instead the Hospital Anxiety and Depression Scale and Patient Health Questionnaire were used. The adolescent data were isolated (n = 609). RESULTS: Adolescents reported longer sleep duration with increasing age by one-way analysis of variance. By Tukey's multiple comparisons test, females slept more at ages 19 and 20 years than at age 14 years (P < .01). Female dual users slept more than nonsmokers, (P = .01; mean difference 43.8 minutes; confidence interval = 0.11 to 1.36). We observed an association between dual use and sleep latency vs nonsmokers (P = .0008; mean difference 6.27 minutes; confidence interval = 1.40 to 11.13). We saw no correlation between inhalant use and cough. CONCLUSIONS: In females, we observed a peak in sleep hours at age 19 years. College-aged females may wake later than younger adolescent females. The data also raised concern for sleep disruption and nicotine-induced wakefulness. Further data are required to guide public health strategies. CITATION: Malhotra CK, Gunge D, Advani I, Boddu S, Nilaad S, Crotty Alexander LE. Assessing the potential impact of age and inhalant use on sleep in adolescents. J Clin Sleep Med. 2021;17(11):2233-2239.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Adolescente , Adulto , Feminino , Humanos , Sono , Qualidade do Sono , Inquéritos e Questionários , Adulto Jovem
12.
Am J Cardiol ; 131: 128-130, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32703526

RESUMO

The COVID-19 pandemic caused by the highly contagious SARS-CoV-2 virus has had devastating consequences across the globe. However, multiple clinics and hospitals have experienced a decrease in rates of acute myocardial infarction and corresponding cardiac catheterization lab activations, raising the question: Has the risk of myocardial infarction decreased during COVID? Sleep deprivation is known to be an independent risk factor for myocardial infarction, and sleep has been importantly impacted during the pandemic, possibly due to the changes in work-home life leading to a lack of structure. We conducted a social media-based survey to assess potential mechanisms underlying the observed improvement in risk of myocardial infarction. We used validated questionnaires to assess sleep patterns, tobacco consumption and other important health outcomes to test the hypothesis that increases in sleep duration may be occurring which have a beneficial impact on health. We found that the COVID-19 pandemic led to shifts in day/night rhythm, with subjects waking up 105 minutes later during the pandemic (p <0.0001). Subjects also reported going to sleep 41 minutes later during the pandemic (p <0.0001). These shifts led to longer duration of sleep during the COVID-19 pandemic. Before the pandemic, subjects reported sleeping 6.8 hours per night, which rose to 7.5 hours during the pandemic, a 44 minute or 11% increase (p <0.0001). We acknowledge the major negative health impact of the global pandemic but would advocate for using this crisis to improve the work and sleep habits of the general population, which may lead to overall health benefits for our society.


Assuntos
Betacoronavirus , Infecções por Coronavirus/complicações , Infarto do Miocárdio/epidemiologia , Pneumonia Viral/complicações , Sono/fisiologia , COVID-19 , Infecções por Coronavirus/epidemiologia , Saúde Global , Humanos , Incidência , Infarto do Miocárdio/complicações , Infarto do Miocárdio/prevenção & controle , Pandemias , Pneumonia Viral/epidemiologia , Fatores de Risco , SARS-CoV-2 , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...